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A B S T R A C T

Spiking neural networks (SNNs), as the brain-inspired neural networks, encode information in spatio-temporal
dynamics. They have the potential to serve as low-power alternatives to artificial neural networks (ANNs)
due to their sparse and event-driven nature. However, existing SNN-based models for pixel-level semantic
segmentation tasks suffer from poor performance and high memory overhead, failing to fully exploit the
computational effectiveness and efficiency of SNNs. To address these challenges, we propose the multi-scale
and full spike segmentation network (MFS-Seg), which is based on the deep direct trained SNN and represents
the first attempt to train a deep SNN with surrogate gradients for semantic segmentation. Specifically, we
design an efficient fully-spike residual block (EFS-Res) to alleviate representation issues caused by spiking
noise on different channels. EFS-Res utilizes depthwise separable convolution to improve the distributions
of spiking feature maps. The visualization shows that our model can effectively extract the edge features of
segmented objects. Furthermore, it can significantly reduce the memory overhead and energy consumption of
the network. In addition, we theoretically analyze and prove that EFS-Res can avoid the degradation problem
based on block dynamical isometry theory. Experimental results on the Camvid dataset, the DDD17 dataset,
and the DSEC-Semantic dataset show that our model achieves comparable performance to the mainstream
UNet network with up to 31× fewer parameters, while significantly reducing power consumption by over
13×. Overall, our MFS-Seg model demonstrates promising results in terms of performance, memory efficiency,
and energy consumption, showcasing the potential of deep SNNs for semantic segmentation tasks. Our code
is available in https://github.com/BICLab/MFS-Seg.
1. Introduction

Semantic segmentation, as a fundamental task in the computer
vision field for scene understanding, aims at classifying each pixel and
labeling it according to its category. Most previous artificial neural
networks (ANNs) focus on improving the performance of the model
at the expense of computational efficiency (Soylu et al., 2023; Kirillov
et al., 2023). When applied in automotive systems, the Internet of Thing
(IoT) devices, wearable devices and so on, it is essential to ensure
the high performance of the model while being memory and energy
efficient. Spiking neural networks, being biologically plausible and
energy efficient (Li et al., 2023; Maass, 1997), are potentially applicable
as an implementation for computationally efficient segmentation task.
Different from traditional ANNs that transmit signals with continuous
values, SNNs propagate binary signals (spikes) among neurons, which
reduces data transmission and storage overhead. Moreover, SNNs pos-
sess asynchronous computation and event-driven properties, when de-
ployed to neuromorphic chips such as TrueNorth (Merolla et al., 2014),
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Loihi (Davies et al., 2018), and Tianjic (Pei, Deng, et al., 2019), SNNs
enable energy reductions up to 1,000 times compared to ANNs.

Currently SNNs for image segmentation include two main train-
ing methods: ANN-to-SNN conversion and directly trained SNNs. The
former is limited by the accuracy of the original ANN model, while
requiring hundreds or even thousands of time steps (Li, He, Dong, Kong,
& Zeng, 2022; Patel, Hunsberger, Batir, & Eliasmith, 2021), which im-
plies that real-time inference is extremely challenging. Additionally, the
converted SNN methods are not suitable for the sparse event data since
their dynamics are designed to approximate the expected activation of
the ANN and cannot represent the spatio-temporal information of the
DVS data (Deng et al., 2020). The latter approach utilizes surrogate
gradient to directly train SNNs, which can reach high performance in a
very short time step. However, the existing network structures, such as
Spiking-DeepLab and Spiking-FCN (Kim, Chough, & Panda, 2022), are
extremely shallow, which is not sufficiently to invoke the effectiveness
vailable online 20 April 2024
893-6080/© 2024 Published by Elsevier Ltd.

https://doi.org/10.1016/j.neunet.2024.106330
Received 17 August 2023; Received in revised form 8 February 2024; Accepted 19
 April 2024

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
https://github.com/BICLab/MFS-Seg
mailto:suqiaoyi2020@ia.ac.cn
mailto:hwh20@mails.tsinghua.edu.cn
mailto:guoqi.li@ia.ac.cn
https://doi.org/10.1016/j.neunet.2024.106330
https://doi.org/10.1016/j.neunet.2024.106330
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2024.106330&domain=pdf


Neural Networks 176 (2024) 106330Q. Su et al.

c
t
t

i
t

S
t
S
t
U
&
s
t
t
a
r

S
t
d
o
l
s
W
l
s
t
s
e

m
s
D
l
3

a

t
d
a

w
o
t
v
t
s
S
t
S
p

2

2

h
c
S
a
t
e
c
t
e
c
h
p
w
s
t

(
S
D
d
c
r
t
o
b
t
l
H
t
A
r
p
e
d
t
2
p

2

s
m
c
c

of the directly trained SNNs. Overlaying network layers directly on
these direct-connected structures would not improve performance and
even yield spike degradation problems (Zheng, Wu, Deng, Hu, & Li,
2021).

Therefore, the main challenge for semantic segmentation with di-
rectly trained SNNs is to empower the network with sufficient feature
representation. Correspondingly, deep training structure is necessary.
Previous attempts at deep direct training of SNNs mainly focus on
classification tasks. For instance, Fang et al. Fang, Yu, Chen, Huang,
et al. (2021) and Hu et al. Hu, Wu, Deng and Li (2021) proposed SEW-
ResNet and MS-ResNet, respectively. They advanced SNNs to be trained
directly on more than one hundred layers deep networks without the
gradient vanishing/exploding problem. However, when applying their
structures towards semantic segmentation, two major problems arise.

Firstly, there is a concern about achieving full spiking in the net-
work to maximize energy efficiency, as hybrid models incorporating
non-spiking operations, such as the multiply-accumulation (MAC) op-
erations introduced in SEW-ResNet (Fig. 1.a), may undermine the
low-power consumption property of SNNs. Additionally, the presence
of non-spiking operations in SEW-Block poses challenges for the de-
ployment of neuromorphic chips. Several neuromorphic chips only
support spike operations, making it difficult to directly deploy hybrid
models that incorporate non-spiking operations (Davies et al., 2018;
Frenkel, Legat, & Bol, 2019). This limitation hinders the practical im-
plementation of SEW-Block on such neuromorphic hardware platforms.
Secondly, there is a computational overhead issue. SEW-ResNet and
MS-ResNet (Fig. 1.b) both extract features by directly stacking 3 × 3
onvolutional blocks, resulting in high memory overheads and compu-
ational complexity. It is crucial to explore methods that fully exploit
he computational efficiency of SNNs to overcome these challenges.

To address the aforementioned challenges and enable directly tra-
ned SNNs to exhibit effectiveness and efficiency in semantic segmen-
ation, this paper introduces the following key contributions:

Firstly, we propose a novel Multi-scale and Full-Spike Semantic
egmentation network (MFS-Seg), which represents the first attempt
o implement semantic segmentation based on deep direct training of
NNs. The MFS-Seg adopts a coarse-to-fine strategy for feature extrac-
ion, drawing inspiration from the multi-input multi-output (MIMO)
Net framework used in deblurring networks (Cho, Ji, Hong, Jung,
Ko, 2021). By incorporating multiple cascaded U-Nets within a

ingle U-shaped network, the multi-scale U-Net mechanism enhances
he representation capability of shallow networks, thereby improving
he performance of the full spike pattern. Leveraging information flow
t different scales, our MFS-Seg achieves high performance within a
emarkably short time step of only 5.

Furthermore, towards deep training, we design an Efficient Full-
pike Residual Block (EFS-Res) that enables the model to better ex-
ract object features. We also demonstrate that EFS-Res could achieve
eep training while avoiding the spike degradation problem based
n the block dynamical isometry. Our specially designed EFS-Res uti-
izes depthwise separable convolution to improve the distributions of
piking feature maps, leading to more precised segmentation edges.
hile improving performance, these mechanisms also make the model

ightweight in a full spike pattern which denotes significant energy-
aving benefits. EFS-Res is embedded in the MFS-Seg network archi-
ecture, and by visualizing the spike distribution, we can find that the
pikes at the edges of the object are more informative which shows the
ffectiveness of our model.

Finally, we validate on the frame-based camvid dataset that our
odel could achieve comparable performance compared to the main-

tream ANN based UNet model. On event-based DDD17 datasets and
SEC-Semantic dataset, our approach achieves high performance with

ow power consumption. Our model reduces the memory overhead by
1 times and the energy consumption by 13 times.

In conclusion, our motivation of this paper is to provide an efficient
2

nd effective solution for semantic segmentation based on deep direct p
raining of SNNs. We believe that our network holds potential for future
eployment on neuromorphic chips, given its full spike nature and
bility to avoid unnecessary computations.

The remainder of this article is organized as follows: In Section 2,
e present a comprehensive overview of related work in the field
f semantic segmentation. Section 3 introduces the neurons of SNN,
raining strategies, and energy consumption calculation methods, pro-
iding the necessary background for our proposed approach. In Sec-
ion 4, we provide a detailed description of the EFS-Block and MFS-Seg
tructures, outlining the key components of our proposed network.
ection 5 presents specific comparative experiments and visualizations
o evaluate the performance and effectiveness of our approach. Finally,
ection 6 concludes this work, summarizing our findings and discussing
otential future directions for research and application.

. Releated work

.1. Effective spiking neural networks

Performance improvement tends to take deeper networks to en-
ance the representation. Towards deep training of SNNs mainly in-
ludes two strategies: ANN-to-SNN conversion and the directly trained
NNs. The main idea of ANN-to-SNN conversion is to approximate the
verage firing rate of SNNs to the continuous activation value of ANNs
hat use ReLU as the nonlinearity (Cao, Chen, & Khosla, 2015; Diehl
t al., 2015). The trade-off between accuracy and latency has always
onstrained the development of ANN-to-SNN training strategies, since
he elimination for approximation errors requires large time steps (Wu
t al., 2021). Recent Spike Calibration (Li et al., 2022) can achieve
omparable performance to ANN for semantic segmentation at a few
undred time steps, however, when the time step is less than 100, the
erformance decreases severely. In addition, bio-inspired event data,
hich can be effectively combined with neuromorphic hardware (Haes-

ig, Cassidy, Alvarez, Benosman, & Orchard, 2018), are not applicable
o the ANN-to-SNN conversion approach.

Directly trained SNNs are implemented using surrogate gradients
Neftci, Mostafa, & Zenke, 2019) for direct training. From the original
pikeProp (Bohte, Kok, & La Poutre, 2002) to the latest STBP (Wu,
eng, Li, Zhu, & Shi, 2018), the ongoing refinement of the gradient
escent algorithms significantly improve the network accuracy. Diverse
oding mechanisms such as time-coding (Comsa et al., 2020) and
ate-coding (Fang, Yu, Chen, Masquelier, et al., 2021) enable directly
rained SNNs to work well at short time steps. To overcome the problem
f gradient vanishing or explosion, the proposed threshold-dependent
atch normalization (TDBN) (Zheng et al., 2021) effectively expands
he SNN from a shallow structure (<10 layers) to a deep structure (50
ayers). Hu et al. Hu, Wu, et al. (2021) and Fang et al. Fang, Yu, Chen,
uang, et al. (2021) further modified the residual structure to advance

he directly trained SNNs for over 100 layers on the classification task.
lso deep SNNs have been tried on other tasks such as image/video
econstruction task (Ran et al., 2021; Zhu et al., 2022), multimodal
attern reconstruction (Xu et al., 2021) and object tracking (Zhang
t al., 2022), etc. Recently, although there are some works based on
irectly trained SNNs explored on the dense-level image segmentation
ask (Kim et al., 2022; Kirkland, Di Caterina, Soraghan, & Matich,
020), their structures are so shallow that they perform excessively
oorly, reducing the effectiveness of direct training of SNNs.

.2. Computational efficient segmentation

The rapid development of deep learning advances the semantic
egmentation task towards high performance. While most of current
odels enhance performance at the expense of computational effi-

iency. In embedded systems or hardware deployments, high energy
onsumption and excessive memory overhead would limit the ap-

lication of the models. Traditional artificial neural network-based
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Fig. 1. Comparison of Mainstream Spike Residual Blocks. (a) The sum of spikes in SEW-ResNet causes non-spike convolution operations. (b) High computational complexity
of MS-ResNet. (c) The structure of our proposed Efficient Full Spike Residual Block (EFS-Res). (d) Illustration of the Spike Convolution and Non-Spike Convolution operations.
solutions mainly include network pruning (Han, Mao, & Dally, 2015;
Han, Pool, Tran, & Dally, 2015; He, Zhang, & Sun, 2017), knowledge
distillation (Chen et al., 2019; Han et al., 2018; Hinton, Vinyals, &
Dean, 2015), quantization (Yang, Deng, Yang, Xie, & Li, 2021), and
lightweight module design. The first two optimize the model struc-
ture by post-processing approaches only after the whole model is
completed training. The latter makes it possible to train deep neural
networks directly on mobile terminals, and the typical modules include
ShuffleNet (Ma, Zhang, Zheng, & Sun, 2018; Zhang, Zhou, Lin, &
Sun, 2018), MobileNet (Howard et al., 2017; Sandler, Howard, Zhu,
Zhmoginov, & Chen, 2018), and SqueezeNet (Iandola et al., 2016).
All of these approaches work well to address the memory overhead
problem, but not the high energy consumption problem. As ANNs
transmit floating-point signals would introduce multiply-accumulation
(MAC) operations, which result in more computational complexity and
more energy cost.

Some explorations of SNN-based semantic segmentation have at-
tempted to provide more energy-efficient solutions. The previous work
attempted with ANN-to-SNN conversion (Baltes, Abujahar, Yue, Smith,
& Liu, 2023; Cheni, Rueckauer, Li, Delbruck, & Liu, 2021; Li et al.,
2022; Patel et al., 2021) which requires long inference time and cannot
3

be applied to event camera data due to the inherent limitations of
the approach. Attempts (Kim et al., 2022; Kirkland et al., 2020) based
on direct training of SNNs on semantic segmentation are currently
ineffective as the structures are quite shallow, while with high memory
overhead. Considering that SNNs transmit spike signals, their inherent
boundedness makes them well-suited for addressing the pixel-level task
of image segmentation.

Designing SNN architectures that leverage these inherent character-
istics is a significant research challenge. In the field of semantic seg-
mentation, popular architectures include the Encoder-Decoder (Badri-
narayanan, Kendall, & Cipolla, 2017; Ronneberger, Fischer, & Brox,
2015) and Encoder (Chen, Zhu, Papandreou, Schroff, & Adam, 2018;
Sun et al., 2019) structures. Existing SNN structures for semantic seg-
mentation tasks primarily rely on Encoder-based designs (Kim et al.,
2022; Kirkland et al., 2020). Several network architectures, such as
encoder structures (Qammaz & Argyros, 2019; Xu et al., 2023, 2022)
and auto-encoders (Kamata, Mukuta, & Harada, 2022; Xu et al., 2021),
have been proposed to enhance the feature extraction capabilities of
SNNs for various tasks. In our work, we aim to design a comprehensive
spike model and adapt the spike distribution to significantly improve
the computational efficiency of directly trained SNNs for semantic
segmentation.
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2.3. Vision sensors for segmentation

Significant vision sensors in semantic segmentation include frame-
based and event-based cameras (Wu et al., 2022). The majority of
current works (Guo, Liu, Georgiou, & Lew, 2018) for semantic segmen-
tation are proposed for common frame cameras which are sensing at the
fixed frame rate and present some limitations in challenging scenarios
(e.g., fast motion, over-exposure, and low light). Bio-inspired event
cameras (e.g., DVS (Hu, Liu, & Delbruck, 2021), ATIS (Posch, Matolin,
& Wohlgenannt, 2010), and DAVIS (Binas, Neil, Liu, & Delbruck, 2017))
have appeared and captured the interest of their advantages: high tem-
poral resolution (microseconds), high dynamic range (up to 120 dB),
low redundancy, and low power consumption. Spatio-temporal repre-
sentation and exploiting rich temporal cues from asynchronous events
are mainly based on the ANNs (Alonso & Murillo, 2019a; Jia et al.,
2023; Sun, Messikommer, Gehrig, & Scaramuzza, 2022). Motivated by
the temporal dynamics of the SNNs, the Spiking-DeepLab and Spiking-
FCN (Kim et al., 2022) attempt to achieve comparable performance to
ANN networks on shallow networks. However, the strengths of SNNs
for asynchronous event data are not fully exploited due to the flaws of
the shallow structure of their networks. Therefore, we propose a deeply
trainable SNN that performs well on both frame-based and event-based
data.

3. Preliminary

3.1. Preliminary of SNNs

Spiking Neuron. Human vision has its own ability to distinguish
etween different objects, even in the face of multiple foreground
r background distractions. Spiking neural networks, as biologically
lausible networks, mimic the human brain in transmitting a sequence
f binary signals and converting them into valuable information. Com-
ared with ANNs, which focus only on information in the spatial
omain, SNNs also have temporal dynamics. Typically, the Leaky
ntegrate-and-Fire (LIF) model (Abbott, 1999), the Hodgkin–Huxley (H-
) model (Hodgkin & Huxley, 1952) and the Izhikevich model (Izhike-
ich, 2003) are the most prominent spiking neuron models. In particu-
ar, the LIF model for its optimal trade-off on computational complexity
nd biological plausibility is widely used (Li et al., 2023). In our work,
e use the iterative LIF model proposed by Wu et al. Wu et al. (2019),
hich can be described as:
𝑡+1,𝑛+1
𝑖 = 𝜏𝑉 𝑡,𝑛+1

𝑖 (1 −𝑋𝑡,𝑛+1
𝑖 ) +

∑

𝑗
𝑊 𝑛

𝑖𝑗𝑋
𝑡+1,𝑛
𝑗 (1)

𝑡+1,𝑛+1
𝑖 = 𝐻(𝑉 𝑡+1,𝑛+1

𝑖 − 𝑉𝑡ℎ) (2)

here the 𝑉 𝑡,𝑛+1
𝑖 represents the membrane potential of the 𝑖th neuron

n the 𝑛 + 1 layer at the 𝑡 timestep, 𝜏 is defined as a decay factor for
eakage. The weighted 𝑊 𝑛

𝑖𝑗 sum of 𝑗 spikes 𝑋𝑡+1,𝑛
𝑗 from the previous

ayer 𝑛 is transmitted to the synaptic input of the current layer. 𝐻(⋅)
epresents the Heaviside step function which satisfies 𝐻(𝑥) = 1 for
≥ 0, otherwise 𝐻(𝑥) = 0. Neuronal firing spiking activity is regulated
y thresholds 𝑉𝑡ℎ, and the 𝑉 𝑡+1,𝑛+1 will be reset to 𝑉𝑟𝑒𝑠𝑡 once the neuron
mits a spike at the 𝑡 + 1 time step.
Training Strategy. As for the training strategy, considering the

on-differentiability of spikes in backpropagation, we use the surrogate
radient backpropagation mechanism which can be represented as:

𝜕𝑋𝑡,𝑛
𝑖

𝜕𝑉 𝑡,𝑛
𝑖

= 1
𝑎
𝑠𝑖𝑔𝑛(|𝑉 𝑡,𝑛

𝑖 − 𝑉𝑡ℎ| ≤
𝑎
2
) (3)

where 𝑎 acts as a regulatory factor to ensure the integral of the gradient
s 1 and determines the curve steepness.

We consider both spatial and temporal domain and adopt the
DBN (Zheng et al., 2021) normalization method. The TDBN can be
epresented as:
𝑡+1,𝑛+1 = 𝜏𝑉 𝑡,𝑛+1(1 −𝑋𝑡,𝑛+1) + TDBN(𝐼 𝑡+1) (4)
4

𝑖 𝑖 𝑖 𝑖 t
DBN(𝐼 𝑡+1𝑖 ) = 𝜆𝑖
𝛼𝑉𝑡ℎ(𝐼 𝑡+1𝑖 − 𝜇𝑐𝑖)

√

𝜎2𝑐𝑖 + 𝜖
+ 𝛽𝑖 (5)

where 𝜇𝑐𝑖, 𝜎2𝑐𝑖 represent the mean and variation values for every channel
sing a mini-batch of sequential inputs {𝐼 𝑡+1𝑖 = 𝛴𝑗𝑊 𝑛

𝑖𝑗𝑋
𝑡+1,𝑛
𝑗 |𝑡 =

0,… , 𝑇 − 1}, 𝜖 represents a tiny constant to avoid dividing by zero,
𝜆𝑖, 𝛽𝑖 are two trainable parameters, and 𝛼 is a threshold-dependent
hyper-parameter.

3.2. Energy consumption

In this work, we compare the energy consumption of ANNs and
SNNs and assume that the data for various operations are 32-bit
floating-point implementation in 45 nm technology (Horowitz, 2014),
where 𝐸𝑀𝐴𝐶 = 4.6𝑝𝐽 and 𝐸𝐴𝐶 = 0.9𝑝𝐽 .

ANNs. The number of operations is often used to measure the com-
putational energy consumption of neuromorphic hardware. For ANNs,
floating-point operations (FLOPs) involve multiply-and-accumulate
(MAC) operations that 𝐹𝐿𝑂𝑃𝑠 = 2 ⋅𝑀𝐴𝐶𝑠. 𝑀𝐴𝐶𝑠 represent the total
number of multiply-add operations.

Considering that the FLOPs in the whole network are basically gen-
erated by the convolutional modules, here we analyze the convolutional
modules specifically. For the convolutional modules, the total number
of operations can be represented separately with (w) or without (w/o)
bias as

𝐹𝐿𝑂𝑃𝑠𝐶𝑜𝑛𝑣𝑠 =

{

2 ⋅ 𝐶𝑖𝑛 ⋅ 𝑘
2 ⋅𝐻 ⋅𝑊 ⋅ 𝐶𝑜𝑢𝑡, 𝑤

(2 ⋅ 𝐶𝑖𝑛 ⋅ 𝑘
2 − 1) ⋅𝐻 ⋅𝑊 ⋅ 𝐶𝑜𝑢𝑡, 𝑤∕𝑜

(6)

here the 𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡 are input and output channels respectively, 𝑘 is the
ize of the convolution kernel, and 𝐻 and 𝑊 denote the output image
ize. The energy consumption of ANN can be described as 𝐸𝐴𝑁𝑁 =
.6 ⋅𝑀𝐴𝐶𝑠.
SNNs. Each spiking neuron emits only one spike and involves in

ccumulate operations (AC) in SNNs, the computational complexity
an be expressed as 𝐹𝐿𝑂𝑃𝑠 = 𝐴𝐶𝑠. 𝐴𝐶𝑠 denote the total number of
ccumulate operations.

However, many current SNNs introduce additional MAC operations
ue to their design flaws (Fang, Yu, Chen, Huang, et al., 2021). Thus,
e quantify the energy consumption of vanilla SNNs as 𝐸𝑆𝑁𝑁 :

𝑆𝑁𝑁 = 𝑇 ⋅ (𝑓𝑟 ⋅ 0.9 ⋅ 𝐴𝐶𝑠 + 4.6 ⋅𝑀𝐴𝐶𝑠) (7)

here 𝑇 and 𝑓𝑟 represents the total time steps and the block firing rate.
hen there is no additional MAC operation in the SNNs, the energy

onsumption ratio can be represented as
𝐸𝑆𝑁𝑁
𝐸𝐴𝑁𝑁

= 𝑇 ⋅ 𝑓𝑟 ⋅ 0.9 ⋅
𝐸𝐴𝐶
𝐸𝑀𝐴𝐶

(8)

4. Methodology

In this section, we first present a brief overview of the input format
and whole structure of the network. Then, we present the details of how
the multi-scale encoder–decoder to extract segmented object features.
Finally, we illustrate the Efficient Full Spike Residual Block which is
the key component of the encoders and decoders, accompanied by a
theoretical analysis and proof of its gradient stability.

4.1. Network input

Event-based streams. Given the spatio-temporal window 𝛤 , the
synchronous event stream 𝐸 = {𝑒𝑛 ∈ 𝛤 ∶ 𝑛 = 1,… , 𝑁} represents

a sparse grid of points in 3D space. In particular, an event 𝑒𝑛 =
(𝑥𝑛, 𝑦𝑛, 𝑡𝑛, 𝑝𝑛) is generated for a pixel (𝑥𝑛, 𝑦𝑛) at the time step 𝑡𝑛 when
he logarithmic light change 𝐼(𝑥, 𝑦, 𝑡) exceeds the threshold 𝜃 . The
𝑡ℎ
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Fig. 2. Multi-scale Full Spike Semantic Segmentation Model (MFS-Seg). (a) Our design of a multi-scale full spike semantic segmentation model.(b)Spike Inception module to
decouple feature representations. (c) Detailed illustration of the signal transmission of our proposed EFS-Res. (d) Feature fusion at different scales. (e)Attention mechanisms for
different scale features.
polarity 𝑝𝑛 ∈ {−1, 1} denotes the increase or decrease of light intensity.
In this work, we follow the handling of the DDD17 dataset in the ESS
model (Sun et al., 2022) to encode each event sequence as several tem-
poral bins which can be represented as histograms. Typically, the whole
event stream 𝐸 can be split into a number of small event sequences
based on a constant temporal window 𝑑𝑡. Our SNN model with spatio-
temporal dynamics processes 𝑇 fixed time steps each time, and the total
input sequence can be represented according to the manner of dividing
the event sequences as 𝛤 = 𝑇 × 𝑑𝑡.

Frame-based streams. Normally, considering the spatio-temporal
feature of SNNs, the static images generated by the frame cameras are
copied and utilized as the input frame for each time step (Yao, Hu,
et al., 2023; Yao, Zhao, et al., 2023).

4.2. Network overview

In this work, our goal is to predict the class of each pixel from
the input static images or event streams that can be represented as
𝐗 = {𝑋𝑡}𝑇𝑡=1 to implement semantic classification of objects. We propose
the deep direct training SNN architecture for semantic segmentation,
namely MFS-Seg. As shown in Fig. 2, this network is essentially a
variant UNet that mainly includes a multi-input encoder, a multi-
output decoder. The multi-input encoder and multi-output decoder
are composed of three encoder blocks (EBs) and three decoder blocks
(DBs) respectively. The Spike Inception Module and our proposed Effi-
cient Full Spike Residual Block in this multi-scale structure contribute
remarkably to the extraction of segmentation features. The Feature
Fusion Module (FFM) and the Feature Attention Module (FAM) are
designed to fuse features at different scales.

The final output of the multi-scale images is directly compared
to the corresponding resized original images for computing the cross-
entropy loss.
5

4.3. Multi-scale and full spike model

The encoder block (EB) is mainly composed of three parts: the Spike
Inception Module, Feature Attention Module and our proposed Efficient
Full Spike Residual Block. The features of all the encoder blocks are
fused through FFM and fed to the decoder blocks. The decoder block
(DB) mainly contains the Spike Inception Module, Efficient Full Spike
Residual Block and the Spike Transposed Convolution used for resizing
feature dimensions.

Multi-Input Encoder. Firstly, all the input datas are encoded into
membrane potential signals by the Spike Inception Module. As shown
in Fig. 2.b, the Spike Inception Module replaces the traditional 3 × 3
convolution block with a 1 × 1 and a 3 × 3 convolution block.
We employ the idea of inception (Szegedy, Vanhoucke, Ioffe, Shlens,
& Wojna, 2016) to produce a representation of mutually decoupled
features by activating more output branches, which could be attention
to the details of the edges of the segmented objects.

Then, the features of the previous scale (𝐸𝐵𝑛−1) are emphasized
or suppressed in the Feature Attention Module (see Fig. 2.e). In the
Feature Attention Module, we use the maxpool to change the dimension
and a convolution layer to change the number of channels of the last
EB. The LIF activation function is used to activate the last layer of
features, and the scale fusion is done by matrix multiplication, which
is essentially a multiplication of spike and still will not introduce
additional MAC operations.

Finally, after the weighted upward encoded features, the fused
features are fed into our proposed Efficient Full Spike Residual Block
(see Fig. 2.c). The number of blocks can be dynamically modified
depending on different tasks. For the features extracted from different
encoder blocks, we directly concatenate and scale the output to the
matching decoder block using the Feature Fusion Modules (shown in

Fig. 2.d).
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Multi-Output Decoder. Given the ability of these multi-scale
eature maps to directly mimic image patterns, we generate segmented
rames of multiple sizes 𝑂 that correspond to different inputs which can
e described as:

=

{

𝐷(𝐷𝐵𝑛(𝐸𝐵𝑜𝑢𝑡
𝑛 );𝐹𝐹𝑀𝑜𝑢𝑡

𝑛 ), 𝑛 = 1, 2

𝐷(𝐷𝐵𝑛(𝐸𝐵𝑜𝑢𝑡
𝑛 )), 𝑛 = 3

(9)

where the 𝐹𝐹𝑀𝑜𝑢𝑡
𝑛 , 𝐸𝐵𝑜𝑢𝑡

𝑛 , 𝐷𝐵𝑜𝑢𝑡
𝑛 are respectively the outputs of the 𝑛th

evel FFM, EB, DB. We revert the feature map to the same size as the
nput frames using the Spike Transposed Convolution for multi-scale
eature fusion.

The output of the DB is the multi-time step feature map rather than
he final in-class frames. Mapping function 𝐷 is required for generating
n intermediate output image, where we use a spike-convolutional
ayer to transmit the membrane potential signals, and then output the
inal segmentation results by rate-coding (Hu, Wu, et al., 2021).

.4. Efficient full spike residual block

Currently, the main structures used for deep training SNNs involve
EW-ResNet and MS-ResNet (Fig. 1). However, the SEW-ResNet essen-
ially transmits a mixture of spikes and integers in the network, when
oth the residual path and shortcut path transmit spike signals, the
ddition operation would result in a non-spiking convolution operation
n the next module. MS-ResNet ensures that the entire network is non-
piking by placing the LIF before the convolution. As shown in Fig. 1.b,
he residual path consists of two 3 × 3 convolutions and we would
nalyze the computational overhead it yields, which is unsympathetic
o the deployment of neuromorphic chips (Pei et al., 2019; Zhang et al.,
020).
FLOPs of MS-Block. For the calculation of convolutional FLOPs

ith bias, we define 𝑘 as the size of the convolutional kernel, 𝑐1, 𝑐2
s the number of input channels and output channels respectively,
ypically these two are equal. ℎ ⋅ 𝑤 as the size of a new feature map
enerated by a convolution layer. The FLOPs incurred by MS-Block can
e expressed as:
2 ⋅ ℎ ⋅𝑤 ⋅ 𝑐1 ⋅ 𝑐2 + 𝑘2 ⋅ ℎ ⋅𝑤 ⋅ 𝑐2 ⋅ 𝑐2

where the 𝑘 is 3. After simplification, we get 18 ⋅ ℎ ⋅𝑤 ⋅ 𝑐21 .
Depthwise Separable Convolutions are a key building block for

any efficient neural network architectures in ANNs (Howard et al.,
017). Motivated by this, we propose an efficient fully spiked residual
lock (EFS-Res) which is applicable to SNNs as shown in Fig. 1.c. The
esidual path is mainly composed of three convolution blocks, where
he first 1 × 1 convolution reduces the number of channels, the second
epth-wise convolution applies group convolution to reduce the num-
er of parameters, and the last 1 × 1 Pointwise convolution combine
hem to create new features. The LIF activation function is placed
efore each convolution to ensure that the whole block is spiking, and
he TDBN is used to normalize the time-domain and spatial-domain
nformation after convolution.
FLOPs of our EFS-Block. When we set the input channel and out

hannel of depth-wise convolution to 2 ⋅𝑐2, the FLOPs for our EFS-Block
an be represented as:

1 ⋅ 2 ⋅ 𝑐2 ⋅ 𝑘21 ⋅ ℎ ⋅𝑤 + 2 ⋅ 𝑐2 ⋅ 2 ⋅ 𝑐2 ⋅
1
𝑔
⋅ 𝑘22 ⋅ ℎ ⋅𝑤 + 2 ⋅ 𝑐2 ⋅ 𝑐2 ⋅ 𝑘21 ⋅ ℎ ⋅𝑤

here the convolution kernel size 𝑘1, 𝑘2 are 1 and 3 respectively, the
denotes the group size of the group convolution that equals to 2 ⋅ 𝑐2.
fter substitution, we get the FLOPs as 4 ⋅ 𝑐21 ⋅ ℎ ⋅𝑤 + 2 ⋅ 𝑐2 ⋅ ℎ ⋅𝑤.
Comparison. As can be seen, our EFS-Block reduces the computa-

ional overhead by about 4 to 5 times compared to MS-Block. Following
xperiments (Section 5) show that our EFS-Block is comparable to
S-Block on performance.
6

.5. Analysis of gradient vanishing/explosion problems

To sufficiently illustrate that our EFS-ResNet can be trained deeply,
e analyze and demonstrate theoretically that it could avoid the spike
egradation problem in this section. Block Dynamical Isometry (Chen,
eng, Wang, Li, & Xie, 2020), which has been developed in recent years
s a theoretical explanation of well-behaved neural network, measures
he change of gradient norm in individual block.

Without loss of generality, a neural network can be viewed as a
erial of blocks:

(𝑥0) = 𝑓𝐿
𝜃𝐿

∗ 𝑓𝐿−1
𝜃𝐿−1

∗ ... ∗ 𝑓 1
𝜃1
(𝑥0), (10)

here 𝜃𝑖 is the parameter matrix of the 𝑖th layer. For simplicity, we
enote 𝜕𝑓 𝑖

𝜕𝑓 𝑖−1 as 𝐽𝑖, which means the Jacobian matrix of the block 𝑗, 𝑗
is the index of the corresponding block.

Definition 1 (Block Dynamical Isometry). Consider a neural network
that can be represented as a series of blocks and the 𝑗th block’s Jacobian
matrix is denoted as 𝐽𝑗 . If ∀𝑗;𝜙(𝐽𝑗𝐽𝖳

𝑗 ) ≈ 1 and 𝜑(𝐽𝑗𝐽𝖳
𝑗 ) ≈ 0, the network

achieves ‘‘Block Dynamical Isometry’’ and can avoid gradient vanishing
or explosion.

Here, 𝜙 means the expectation of the normalized trace, 𝜑 means
𝜙(𝑨2) −𝜙2(𝑨). The theory ensures the gradient of the network will not
decrease to 0 or explode to ∞ since every block have 𝜙(𝐽𝑗𝐽𝖳

𝑗 ) ≈ 1. And
(𝐽𝑗𝐽𝖳

𝑗 ) ≈ 0 makes sure that the accident situation will not happen. And
n most cases (Hu, Wu, et al., 2021; Zheng et al., 2021), 𝜙(𝐽𝑗𝐽𝖳

𝑗 ) ≈ 1
s enough for avoiding gradient vanish or exploding. More detailed
escription of the notation and the theory are in Chen et al. (2020).

emma 1 (Multiplication). (Theorem 4.1 in Chen et al. (2020)) Given
∶=

∏1
𝑗=𝐿 𝑱 𝑗 , where {𝑱 𝑗 ∈ R𝑚𝑗×𝑚𝑗−1} is a series of independent random

atrices. If (
∏1

𝑗=𝐿 𝑱 𝑗 )(
∏1

𝑗=𝐿 𝑱 𝑗 )𝑇 is at least the 1st moment unitarily
nvariant, we have
(

(
1
∏

𝑗=𝐿
𝑱 𝑗 )(

1
∏

𝑗=𝐿
𝑱 𝑗 )𝑇

)

=
1
∏

𝑗=𝐿
𝜙(𝑱 𝑗𝑱 𝑗

𝑇 ). (11)

emma 2 (Addition). (Theorem 4.2 in Chen et al. (2020)) Given 𝑱 ∶=
∏1

𝑗=𝐿 𝑱 𝑗 , where {𝑱 𝑗 ∈ R𝑚𝑗×𝑚𝑗−1} is a series of independent random
atrices. If at most one matrix in 𝑱 𝑗 is not a central matrix, we have

(𝑱𝑱 𝑇 ) =
∑

𝑗
𝜙(𝑱 𝑗𝑱 𝑗

𝑇 ). (12)

emma 3. For each of 𝐿 sequential blocks in a neural network, we have
(

𝑱 𝒊𝑱 𝑇
𝒊
)

= 𝜔 + 𝜏𝜙
(

𝑱 𝒊𝑱 𝒊
𝑇
)

where 𝑱 𝒊 is its Jacobian matrix, 𝜔 and 𝜏 are
ariables. Given 𝜆 ∈ N+ < 𝐿, if 𝐶𝜆

𝐿(1−𝜔)𝜆 and 𝐶𝜆
𝐿𝜏

𝜆 are small enough, the
etwork would be as stable as a 𝜆-layer network when the network satisfies

∀𝑖, 𝜙
(

𝑱 𝒊𝑱 𝑇
𝒊
)

≈ 1.

Proposition 1. The EFS-Block can be stable as a 𝜆-layer network which
satisfies 𝜙(𝑱 𝒋𝑱 𝑻

𝒋 ) = 1 and 𝜆 ∈ N+ < 𝐿.

Proof. For the EFS-Block, we denote the Jacobian matrix of the
residual path as 𝑱 𝒊. According to Lemma 3, we have 𝜙

(

𝑱 𝒊𝑱 𝑇
𝒊
)

=
1 + 𝜏𝜙

(

𝑱 𝒊𝑱 𝒊
𝑇
)

, where 𝛾 is from the linear transformation 𝛾𝑥 + 𝛽 with
the normalization at the end of the residual path. EFS-ResNet can be
viewed as an extreme example of Lemma 1 with (1−𝜔) → 0. Therefore,
∀𝜆, 𝐶𝜆

𝐿(1 − 𝜔)𝜆 is close to zero, and 𝐶𝜆
𝐿𝛾

𝜆 can be small enough for a
given 𝜆 if 𝛾 is initialized as a relative small value. In this way, the error
of non-optimal block will be influenced only within 𝜆 layers and the
EFS-ResNet will be as stale as a much shallower 𝜆-layer network.
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5. Experiments

In this section, we evaluate the effectiveness and efficiency of our
model on different sensor-generated datasets. We conduct experiments
on the frame-based Camvid dataset (Brostow, Fauqueur, & Cipolla,
2009), and the event-based DDD17 dataset (Binas et al., 2017), the
DESC-Semantic dataset (Sun et al., 2022).

Metrics. We utilize the standard metric Mean Intersection over Union
(mIoU), which is commonly used on the image segmentation task, for
measuring the effectiveness of the model. The mIoU is calculated per
class as:

𝑚𝐼𝑜𝑈 (𝑦, �̄�) = 1
𝐶

𝐶
∑

𝑗=1

∑𝑁
𝑖=1 𝛿(𝑦𝑖,𝑐 , 1)𝛿(𝑦𝑖,𝑐 , �̄�𝑖,𝑐 )

∑𝑁
𝑖=1 𝑚𝑎𝑥(1, 𝛿(𝑦𝑖,𝑐 , 1) + 𝛿(�̄�𝑖,𝑐 , 1))

(13)

where 𝛿 is the Kronecker delta function, 𝑦𝑖 denotes pixel 𝑖 that belongs
to the same class 𝑦, and 𝑦𝑖,𝑐 represents the boolean that whether the
pixel 𝑖 is in a certain class 𝑐.

For the evaluation of model efficiency, we measure the number of
arameters of to evaluate the memory usage (Params) and the num-

ber of float-point operations (𝐹𝐿𝑂𝑃𝑠) to evaluate the computational
complexity as defined in Section 3.2. Furthermore, we also measure
the energy consumption of the model according to the description of
Section 3.2.

Datasets. The Cambridge-driving Labeled Video Database (CamVid)
contains over 700 images specified manually and provides ground truth
labels that associate each pixel with one of 32 semantic classes. The
dataset is spilt as 367 training pairs, 101 validation pairs and 233
test pairs following the general setting (Brostow, Shotton, Fauqueur,
& Cipolla, 2008) and we annotate the ground truth to 11 semantic
categories due to the rare occurrence of the remaining classes following
the general setting. Considering the less data available in the training
set, we merged the training and test sets and evaluated them on the
validation set.

The DDD17 dataset, as the first ever public dataset of real au-
tomotive end-to-end training data, is recorded on different scenarios
(e.g., motorways and urban scenarios) with an advanced 346 × 260
ixel DAVIS sensor (Brandli, Berner, Yang, Liu, & Delbruck, 2014). It
rovides synchronized grayscale and event-based information, while
t does not provide semantic segmentation labels. Therefore, we use
he pseudo-labels offered by the Ev-SegNet model (Alonso & Murillo,
019b) which are generated by a pre-trained network running on the
rayscale frames of the DAVIS346B (Brandli et al., 2014). Due to the
ow resolution of the DAVIS346B, multiple classes are merged and the
ranularity of the labels are reduced.

The DSEC-Semantic dataset (Sun et al., 2022) is an extension of
he sequences of the large-scale DSEC dataset (Gehrig, Aarents, Gehrig,

Scaramuzza, 2021), consisting of recordings captured in both urban
nd rural environments. This dataset provides 640 × 440 pixel labels
or 11 different classes, namely background, building, fence, person,
ole, road, sidewalk, vegetation, car, wall, and traffic sign. Notably,
he labels in the DSEC-Semantic dataset exhibit superior quality and
ffer more intricate details compared to the labels found in DDD17.
Implementation Details. We perform the experiments with the

FS-Block explained in Section 4.4 and the MFS-Seg framework de-
ailed in Section 4.3. We set the reset value 𝑉𝑟𝑒𝑠𝑒𝑡 of LIF neurons to
, the membrane time constant 𝜏 to 0.25, the threshold 𝑉𝑡ℎ to 0.5,
nd the coefficient 𝛼 to 1. We train all model variations from scratch
sing the Adam optimizer. The network is trained for 600 epochs which
re sufficient for convergence on one NVIDIA RTX3090 GPU for the
amvid dataset with a batch size of 2. With an initial learning rate
f 1e−3, it is decreased by the factor of 0.1 at every 200 epochs. On
he DDD17 dataset, we train the model for 100 epochs, with the batch
ize of 8 on one NVIDIA A100 GPU. The learning rate is initially set
o 1e−3 and decreases by the factor of 0.1 at every 20 epochs. For the
SEC-Semantic dataset, we conduct experiments on the NVIDIA A100
7

PU. The initial learning rate is set to 2e−3, the batch size is 4, and
we train for 100 epochs. At the 60th epoch, we apply a learning rate
decrease with a decay factor of 0.5.

The initial size of the static image is 260 × 346 and we trans-
form it to 180 × 240. The original size of the DDD17 dataset images
is transformed to 260 × 352. After applying event transformation,
the DSEC-Semantic dataset is resized to images with dimensions of
440 × 640. We maintain the same settings as described in this arti-
cle (Sun et al., 2022) to ensure consistency. The input sizes of the three
encoder blocks are the original, twice downsampled and 4 times down-
sampled. For the evaluation of the model computational complexity, we
calculate the total number of FLOPs of these networks using torchstat.1

5.1. Static image segmentation

Here we experimentally set the number of EFS-Blocks in each
encode and decode block to 4. The whole network can reach a depth
of at least 80 layers.

Effectiveness. The results demonstrate that the directly training
method can achieve higher performance at only 5 time steps (presented
in Table 1). Compared to the typical ANN methods such as UNet (Ron-
neberger et al., 2015), SegNet (Badrinarayanan et al., 2017) method
based on encoder–decoder structure, and FCN (Long et al., 2015) with
encoder structure, our model achieves better performance with the
mIOU of 0.621. When the UNet structure is implemented with SNN,
the performance drops a lot, whereas our approach is comparable to
the performance of the same structure ANN. When the model structures
are all based on MFS-Seg framework, our efficient full-spike Block
(EFS-Block) can also achieve comparable performance compared to the
MS-Block, which illustrates the potential of the full spiking network to
be further exploited.

Efficiency Analysis. From Table 1, it is well observed that at
comparable performance, our EFS-Block reduce both the number of
parameters and FlOPs by at least 𝟑× when comparing to the previous
MS-Block. The firing rate of our model is slightly increased, which
may be an effect of the more dense representation of features needed
with fewer number of parameters. Nevertheless, it does not limit the
energy advantage of our model and still reduces energy consumption
by 2 times. The MFS-Seg structure better improves the model per-
formance while bringing some computational complexity by certain
inception module transformations. Fortunately, our EFS-Block reduces
the computational complexity and requires only 1.11M parameters and
4.43 GFLOPs. More importantly, our solution not only reduces the
model complexity, but also enables an efficient 13× reduction in energy
onsumption compared to the traditional ANN-based UNet structure.

.2. Event-based segmentation

Our model adopts the data processing strategy of the ESS model (Sun
t al., 2022). The 𝑑𝑡 of the raw event stream can be split into 50 ms,
50 ms. Alternatively, we can fix the event time intervals based on the
umber of events. The result we give utilizes networks that are more
han 80 layers deep and the number of EFS-Blocks in each encode and
ecode block is set to 3 in DDD17 dataset and 4 in DSEC-Semantic
ataset.
Effectiveness. Currently, methods based on directly training SNNs

re in the early exploration stage for semantic segmentation tasks. Pre-
ious SNN-based approaches mainly include Spiking-DeepLab, Spiking-
CN (Kim et al., 2022) and SCGNet (Zhang et al., 2023). The ar-
hitecture of Spiking-DeepLab and Spiking-FCN, are extremely shal-
ow, which is not sufficiently to invoke the effectiveness of the di-
ectly trained SNNs. Overlaying network layers directly on these direct-
onnected structures would not improve performance and even yield

1 https://github.com/Swall0w/torchstat

https://github.com/Swall0w/torchstat
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Table 1
Results on the frame-based Camvid dataset and the event-based DDD17 dataset and DSEC-Semantic dataset.

Dataset Method Model Params(M) GFLOPs FRa T mIoU Etotal(mJ)

Camvid

ANN

UNet (Ronneberger et al., 2015) 31.04 30.22 – – 0.610 130.01
FCN (Long, Shelhamer, & Darrell, 2015) 13.50 3.04 – – 0.482 13.98
SegNet (Badrinarayanan et al., 2017) 1.43 107.50 – – 0.601 494.50
MIMO UNet (Cho et al., 2021) 3.79 22.17 – – 0.591 101.98
MFS-MSb (Hu, Wu, et al., 2021) 3.75 24.45 – – 0.632 112.47
MFS-EFSc 1.11 8.85 – – 0.633 40.73

SNN

UNet (Ronneberger et al., 2015) 31.03 30.18 0.244 5 0.430 33.14
spiking-FCN (Kim et al., 2022) 13.57 9.53 – 5 0.425 –
MFS-MS 3.75 12.23 0.179 5 0.627 21.88
MFS-EFS (ours) 1.11 4.43 0.243 5 0.621 10.00

DDD17

ANN

EV-SegNet (Alonso & Murillo, 2019a) 29.09 73.62 – – 0.548 338.65
E2ViD (Rebecq, Ranftl, Koltun, & Scaramuzza, 2019) 10.71 16.65 – – 0.448 76.59
ViD2E (Gehrig, Gehrig, Hidalgo-Carrió, & Scaramuzza, 2020) 29.09 73.62 – – 0.560 338.65
DTL (Wang, Chae, & Yoon, 2021) 60.48 16.74 – – 0.588 77.01
EvDistill (Wang, Chae, Yoon, Kim & Yoon, 2021) 59.34 12.45 – – 0.580 57.27
EV-Transfer (Messikommer, Gehrig, Gehrig, & Scaramuzza, 2022) 7.37 7.88 – – 0.149 36.25
ESS (Sun et al., 2022) 12.91 14.22 – – 0.614 65.41
EvSegFormer (Jia et al., 2023) 24.20 31.20 – – 0.526 143.52

hybridd

HALSIE (Biswas, Kosta, Liyanagedera, Apolinario, & Roy, 2022) 1.82 4.11 – – 0.606 17.89(ANN+SNN)

SNN

spiking-DeepLab (Kim et al., 2022) 4.14 54.34 – 20 0.337 48.91
spiking-FCN (Kim et al., 2022) 13.57 3.04 – 20 0.342 –
SCGNet-S (Zhang, Fan, & Zhang, 2023) 0.49 – – 4 0.493 –
SCGNet-L (Zhang et al., 2023) 1.85 – – 4 0.514 –
MFS-MS 2.97 20.82 0.187 2 0.632 17.57
MFS-EFS (ours) 0.92 8.11 0.238 2 0.628 7.72

ANN

EV-SegNet (Alonso & Murillo, 2019a) 29.09 405.18 – – 0.518 1863.83
E2ViD (Rebecq et al., 2019) 10.71 90.65 – – 0.407 416.99

DSEC- EV-Transfer (Messikommer et al., 2022) 7.37 42.93 – – 0.232 197.48
Semantic ESS (Sun et al., 2022) 12.91 77.46 – – 0.454 356.32

SNN
spiking-FCN (Kim et al., 2022) 13.57 104.81 0.204 2 0.437 37.73
MFS-EFS (ours) 1.11 28.88 0.245 2 0.461 12.74

a FR represents the firing rate.
b MFS- denotes the MFS-Seg framework. MS represents the spike residual module is MS-Block.
c EFS represents our proposed EFS-Block.
d Hybrid indicates that this model structure utilizes a mix of ANNs and SNNs.
.
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Table 2
Comparing the performance of different spike lightweight blocks on the Camvid
dataset. All experiments are performed in the MFS-Seg architecture with 5 time steps

Block Params(M) GFLOPs Firing rate mIOU

EFS-Res18 0.38 2.65 0.216 0.565
Spike Shuffle 0.39 2.21 0.311 0.485
EFS-Res72 1.11 4.43 0.243 0.621
Spike Fire 1.25 4.75 0.249 0.582

spike degradation problems (Zheng et al., 2021). As for the SNN-
based state-of-the-art method, SCGNet, it is based on FCN structure.
We achieved significantly better results than the comparison model
on the DDD17 dataset, particularly when using shorter time steps (2
timesteps), all while utilizing fewer parameters. The main reason for
our better experimental results can be attributed to the unique structure
of our model, which is a variant of UNet. Our model incorporates multi-
scale inputs and outputs, along with a jump-junction structure that
effectively preserves spatial information.

As a new solution to implement deep SNN semantic segmentation,
we achieve good performance (mIoU=0.633) on the DDD17 dataset
nd (mIoU=0.461) on the DSEC-Semantic dataset. Our model on the
DD17 dataset performs better than the current methods whether ANN
r SNN based which well encourages the exploration of SNNs based
ork on event camera datasets. For a fair comparison, we chose the

esults where the labels are all frames for comparison on the DSEC-
emantic dataset. Our model could achieve comparable performance
o the best current ANN model (Sun et al., 2022) with less parameters
nd only 2 time steps.
8

Efficiency Analysis. Our MFS-Seg model requires only 1.11, which
s the minimum memory occupation of all methods. Although the
LOPs of HALSIE are minor, the model has higher energy consump-
ion since the model mostly involves ANN for feature extraction. Our
odel consumes only 7.72 mJ of energy with 2 time steps on the
DD17 dataset, which is around 43.87 times less energy consumption

han the most typical ANN-based EVsegNet model. Compared to other
NN methods, we are able to reduce the energy consumption by at
east 6 times. Through experimental analysis and energy consumption
omparison, we verify the efficiency of our full spike based semantic
egmentation scheme.

.3. Ablation study

Efficient Block Comparison. For ANNs, typical lightweight mod-
ls include SqueezeNet, MobileNet and ShuffleNet, all of which have
chieved great success. The SqueezeNet is mainly based on the pro-
osed fire module, which consists of squeeze layer and expand layer.
queeze layer performs 1 × 1 convolution, and expand layer concats the
eature maps derived from 1 × 1 and 3 × 3 convolution. This model
s like VGG’s idea of stacked convolution, which can be difficult to
rain in depth. MobileNet adopts the depth-wise convolution to reduce
he network weight parameters in place of the traditional convolution.
urthermore, point-wise convolution is used to obtain all the feature
ap information of the input layer. The ShuffleNet similarly applies
epth-wise convolution, the difference is that it uses channel shuffle to
orm new feature maps to solve the problem of information non-flow
aused by group convolution.
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Fig. 3. Semantic Segmentation results on the Camvid Dataset. The first three columns are experimented on the same EFS-Res54 to illustrate that the longer the time step the
better the performance. The comparison between the third and fourth columns shows that the deeper the depth of EFS-Res, the better the feature extraction capability. Res54
denotes that all EFS-Blocks in MFS-Seg contain 54 layers of convolution.
Fig. 4. Semantic segmentation results on the DDD17 dataset. The first three columns explore the effect of network depth on segmentation accuracy at the same time step. To
visualize the event stream more clearly, we plot on the corresponding gray image.
Table 3
Efficiency analysis of different modules on Camvid dataset. w/o represents ablation
experiments without corresponding modules. Incep denotes spike inception module.
The group indicates that the EFS-Block is without the group convolutions for ablation
experiments.

Module Params (M) GFLOPs Firing rate mIOU

MFS-Seg 0.92 3.83 0.240 0.611
w/o multi scale 0.92 3.83 0.240 0.602
w/o Incep 0.73 2.69 0.236 0.562
w/o group 6.28 19.61 0.180 0.623

We transfer the lightweight modules that are commonly used in
ANN into SNN. To achieve deep training and full spiked, all of them
have been redesigned shown in Fig. 6. All blocks are experimented
with the MFS-Seg framework and the results are shown in the Table 2
on the Camvid dataset. Our EFS-Block is based on the structure of
mobilenet V2, without the linear transformation, to ensure that the
9

Table 4
Ablation studies of different numbers of residual blocks on the Camvid dataset and the
DDD17 dataset.

Dataset Model Params (M) GFLOPs FR mIOU

Camvid

EFS-Res36 0.59 3.23 0.239 0.597
EFS-Res54 0.92 3.83 0.240 0.611
EFS-Res72 1.11 4.43 0.243 0.621

DDD17

EFS-Res36 0.74 6.83 0.234 0.609
EFS-Res54 0.92 8.11 0.238 0.628
EFS-Res72 1.11 9.38 0.227 0.640

whole module is fully spiked. The performance of the other blocks
are poor. Through the visualization of spiking attention distribution
maps(shown in Fig. 5), we compare spike shuffleNet and EFS-Res18
with about the similar number of parameters, and it can be seen that the
former object boundary feature extraction is very fuzzy. Moreover, with
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Fig. 5. Comparison of spike distribution maps for the spike lightening module.
The corresponding rows of the models are compared in about the same number of
parameters. The sharper the red edge represents the stronger the validity of the spike
distribution and the better the feature extraction capability. The deeper red areas
represent more intense spike activity, while purple areas indicate essentially no spike
release activity.

Fig. 6. Spike Fire Module and Spike Shuffle Module. We redesign the commonly
used Fire and Shuffle modules in ANN by fully spiking them. BN represents the TDBN.

deeper layers of EFS-Res, the representation of object edge features will
be more effective.

Module Efficiency Analysis. The differences of our MFS-Seg com-
pared to previous architectures are mainly in the introduction of multi-
scaling of inputs and outputs and Spike Inception modules. As well as
the idea of group convolution is used in the design of EFS-Block to
reduce the number of parameters. Here we analyze the effectiveness
of each of these modules on the Camvid dataset. Each encode and
decode module is set to 3, and the depth of the entire network is about
60 layers. We validate the effect of multi-scale feature extraction on
model performance and simply set the error weights of the small and
medium scales to 0. As seen in Table 3, the performance of the model
is significantly reduced without the features of these two scales. For
the Inception module, although it would cause an increase in FLOPs
by a certain amount. However, there is a 50% increase in performance
for this part of the computational complexity. For group convolution in
EFS-Block, we verified its effectiveness by reducing 4× FLOPs and 3×
number of parameters with comparable performance.
10
Table 5
Impact of the time step size on Camvid dataset.

T 1 3 5 7

Firing Rate 0.328 0.362 0.367 0.383
mIOU 0.554 0.580 0.611 0.618

Numbers of Residual Blocks. In Section 4.5, we theoretically
analyze that our EFS-ResNet can achieve deep training. The depth of
a single EFS-block is 3. Totally, MFS-Seg has 6 encode and decode
modules. Here we set the number of each module to 2, 3, 4 respectively
and report results in Table 4 on the Camvid dataset and DDD17 dataset
based on EMS-Res36, EFS-Res54, and EMS-Res72. When the scale of the
network is larger, the feature extraction ability becomes stronger (see
Fig. 4).

Size of Time Steps. As the sparsity of event streams, different
event sampling strategies would affect the ablation experiment of time
steps on DDD17 dataset. Thus, we report the performance based on
the Camvid dataset for 𝑇 = 1, 3, 5, 7 in Table 5. Here we set each
encode and decode module to work with 3, and the depth of the
entire network to be about 60 layers. We show the segmentation results
compared in Fig. 3, where it can be found that the accuracy of semantic
segmentation is higher when the time step is longer. The time steps
can be dynamically adjusted to achieve a balance of effectiveness and
efficiency according to the needs of the actual task.

6. Conclusion

In this work, we have made pioneering contributions to the ad-
vancement of deep direct training-based SNNs for semantic segmen-
tation. Inspired by the successful coarse-to-fine strategy used in de-
blurring tasks, we propose a novel multi-scale semantic segmentation
network based on deep direct training of SNNs, achieving remarkable
performance within an extremely short time step. To fully exploit the
computational efficiency potential of SNNs, we introduce an efficient
and full-spike module called EFS-Block. We demonstrate the module’s
capacity for deep training based on block dynamical isometry theory.
Through comprehensive validation on the frame-based Camvid dataset,
the event-based DDD17 dataset and the DSEC-Semantic dataset, we
demonstrate the superiority of our model in terms of both effective-
ness and efficiency compared to current models. Visualizing the spike
distribution map reveals that spike activity is highly focused on edge
features, further highlighting the effectiveness of our approach. Our
network design leverages fully additive operations with minimal mem-
ory and computational overhead, effectively sparsifying and efficiently
utilizing spiking activities. We firmly believe that our sparse fully spike
network enables more efficient deployment of SNNs on neuromorphic
chips.
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