
GraphAvatar: Compact Head Avatars with GNN-Generated 3D Gaussians

Xiaobao Wei1,2, Peng Chen1,2, Ming Lu3, Hui Chen1†, Feng Tian1,
1Institute of Software, Chinese Academy of Sciences

2University of Chinese Academy of Sciences 3Intel Labs China
weixiaobao0210@gmail.com

Abstract

Rendering photorealistic head avatars from arbitrary view-
points is crucial for various applications like virtual reality.
Although previous methods based on Neural Radiance Fields
(NeRF) can achieve impressive results, they lack fidelity
and efficiency. Recent methods using 3D Gaussian Splatting
(3DGS) have improved rendering quality and real-time per-
formance but still require significant storage overhead. In this
paper, we introduce a method called GraphAvatar that uti-
lizes Graph Neural Networks (GNN) to generate 3D Gaus-
sians for the head avatar. Specifically, GraphAvatar trains a
geometric GNN and an appearance GNN to generate the at-
tributes of the 3D Gaussians from the tracked mesh. There-
fore, our method can store the GNN models instead of the 3D
Gaussians, significantly reducing the storage overhead to just
10MB. To reduce the impact of face-tracking errors, we also
present a novel graph-guided optimization module to refine
face-tracking parameters during training. Finally, we intro-
duce a 3D-aware enhancer for post-processing to enhance the
rendering quality. We conduct comprehensive experiments to
demonstrate the advantages of GraphAvatar, surpassing ex-
isting methods in visual fidelity and storage consumption.
The ablation study sheds light on the trade-offs between ren-
dering quality and model size. The code will be released at:
https://github.com/ucwxb/GraphAvatar.

Introduction
Rendering photorealistic head avatars from any viewpoint
is essential for virtual reality and augmented reality ap-
plications. Key aspects such as visual fidelity, rendering
speed, and storage overhead are crucial. With the advance-
ment of deep learning, methods based on neural fields have
become prevailing due to their advantages in these as-
pects. The seminal neural field work Neural Radiance Fields
(NeRF) (Mildenhall et al. 2021) and its variants (Wang et al.
2021; Wei et al. 2023) have achieved impressive results for
neural rendering and reconstruction.

Regarding head avatars, NeRF-based methods (Gao et al.
2022; Zielonka, Bolkart, and Thies 2022a; Zheng et al.
2023) have focused on improving the generation from
short RGB video inputs. Based on 3D morphable models
(3DMM) (Li et al. 2017; Paysan et al. 2009), these methods

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

†Corresponding Author.

learn neural fields to create 3D-consistent and interpretable
digital head avatars. These approaches enable high-quality
rendering and diverse applications, such as facial retarget-
ing, expression editing, and rapid avatar generation. Al-
though point (Zheng et al. 2023) and hash table (Zielonka,
Bolkart, and Thies 2022a; Gao et al. 2022) representations
have been explored for acceleration, they still struggle with
the excessive sampling in the volume rendering of NeRF,
which prevent them from achieving real-time rendering eas-
ily. Moreover, due to the implicit characteristics of NeRF,
these methods lack controllability and do not generalize well
to the novel poses and expressions.

Recently, 3D Gaussian Splatting (Kerbl et al. 2023) suc-
cessfully represents a static scene as 3D Gaussians and ren-
ders with a differentiable rasterizer, significantly accelerat-
ing novel view synthesis. Due to the unstructured nature of
3D Gaussian representation, 3DGS also excels in control-
lability and generalization compared to NeRF (Fang et al.
2023). Many recent methods (Qian et al. 2024; Xiang et al.
2024; Xu et al. 2024; Dhamo et al. 2023) have been pro-
posed to apply 3DGS to head avatars. Based on face track-
ing parameters, these methods initialize or bind 3D Gaus-
sians to the geometry prior using neutral mesh (Xu et al.
2024), tracked mesh (Qian et al. 2024), or UV mapping (Xi-
ang et al. 2024). Subsequently, the 3D Gaussians are learned
from short RGB video inputs involving densification, such
as cloning and pruning, and deformations from canonical
space. These methods leverage 3D head meshes to incorpo-
rate prior knowledge, facilitating better convergence of 3D
Gaussians, which capture human heads’ appearance, geom-
etry, and dynamics.

However, existing 3DGS-based approaches still face two
obvious limitations: 1) Significant and fluctuating storage
overhead. Since the 3D head mesh contains many triangles,
assigning multiple 3D Gaussians to each triangle results in
excessive storage overhead due to the large number of tri-
angles in the 3D head mesh. Furthermore, the number of
3D Gaussians also changes during the densification process.
This leads to a fluctuating storage overhead, posing chal-
lenges for practical applications. 2) Heavy reliance on face
tracking. Since these methods initialize or bind 3D Gaus-
sians to the tracked head mesh, they heavily rely on the
accuracy of face tracking. The accumulated errors of face
tracking will impact the training of 3D Gaussians.

Hidden
Layers

GraphAvatar

Tracked Mesh
Rendered
Images3D Gaussians Quantitative Results on the INSTA Dataset

NHA IMAvatar
INSTA

FlashAvatar

GaussianAvatars

Gaussian Head Avatar

GraphAvatar (Ours)

Point size correspond to
the model size (MB)

Figure 1: GraphAvatar leverages graph neural networks to generate 3D Gaussians, which are then rasterized into high-fidelity
images based on tracked meshes. Compared to contemporary approaches, GraphAvatar not only delivers superior rendering
performance but also features the most compact model size, substantially minimizing storage requirements.

To address these issues, we propose a novel method
named GraphAvatar, which utilizes Graph Neural Networks
(GNN) (Kipf and Welling 2016; Ranjan et al. 2018) to gener-
ate 3D Gaussians for photorealistic head avatars. As shown
in Fig. 1, GraphAvatar optimizes a geometric GNN and an
appearance GNN to generate 3D Gaussians using tracked
meshes as input. These 3D Gaussians serve as anchors and
are fed into a view-dependent MLP to learn 3D Gaussian
offsets related to different viewpoints. The predicted off-
sets adjust the anchor 3D Gaussians, breaking free from
the constraints imposed by the tracked meshes, allowing for
learning better details. Subsequently, rasterization is used to
render the adjusted 3D Gaussians into photorealistic head
avatars. Thus, our method significantly reduces the stor-
age overhead by storing the GNN models instead of many
3D Gaussians, making our method more compact. To re-
duce the impact of face-tracking errors, we also introduce
an advanced graph-guided optimization module to optimize
face-tracking parameters during the training. Finally, to re-
duce the over-smoothing induced by GNN, we incorporate a
lightweight 3D-aware enhancer for post-processing, which
utilizes rendered depth maps to improve rendering quality.
Our main contributions are summarized as follows:

• We propose GraphAvatar, a novel and compact method
that utilizes GNN to generate 3D Gaussians. Our method
only stores the GNN models, eliminating the need to
store 3D Gaussians directly.

• To reduce reliance on tracked meshes, we introduce
a graph-guided optimization module to refine face-
tracking parameters during training.

• To alleviate the over-smoothing induced by GNN, we in-
corporate a 3D-aware enhancer to enhance details for the
rendered images.

• We conduct comprehensive experiments on challenging
datasets to demonstrate that GraphAvatar achieves state-
of-the-art rendering quality while requiring the least stor-
age overhead.

Related work
Head Avatar Animation. The animation generation of
head avatars is divided into 3D and 2D scenes. In 3D ani-
mations, the FLAME model (Li et al. 2017) is commonly

used for generation and editing tasks. For instance, studies
such as VOCA (Cudeiro et al. 2019), COMA (Ranjan et al.
2018), FaceFormer (Fan et al. 2022), and SelfTalk (Peng
et al. 2023a) utilize the FLAME model for speech-driven
head avatar animation generation. Meanwhile, methods like
EmoTalk (Peng et al. 2023b) and PiSaTalker (Chen et al.
2023) are based on blendshapes to construct 3D head
avatars. In 2D animations, Gafni et al. (Gafni et al. 2021)
proposes a NeRF model based on expression vectors learned
from monocular videos. HeadNeRF (Hong et al. 2022) de-
velop a parametric head model based on NeRF, using 2D
neural rendering to enhance efficiency. INSTA (Zielonka,
Bolkart, and Thies 2023) deforms sampling points to canon-
ical space by locating the nearest triangle on the FLAME
mesh, achieving rapid rendering. Recent 3D Gaussian Splat-
ting has been applied to dynamic head modeling. Gaus-
sianAvatars (Qian et al. 2024) binds 3D Gaussians to a para-
metric morphable face model, allowing them to move with
the dynamic mesh. GaussianHeadAvatar (Xu et al. 2023) ini-
tializes 3D Gaussians with a neutral mesh head and then uti-
lizes an MLP-based deformation net to capture complex ex-
pressions. FlashAvatar (Xiang et al. 2024) attaches 3D Gaus-
sians to the facial UV map, but the limited resolution of the
2D UV map restricts its ability to represent a dynamic 3D
head and accurately capture complex facial topology.

However, the above methods require substantial and dy-
namic storage consumption, posing challenges for practical
applications. Conversely, GraphAvatar stores only the GNN
models instead of the 3D Gaussians, significantly reducing
storage requirements. Additionally, we introduce a graph-
guided optimization module and a 3D-aware enhancer to al-
leviate reliance on accurately tracked parameters.

Method
Preliminaries
Given a set of images of a static scene and the correspond-
ing camera poses, 3DGS (Kerbl et al. 2023) learns a 3D
scene representation using a set of 3D Gaussians to achieve
novel view synthesis. 3DGS employs the point cloud ob-
tained from structure from motion (Schonberger and Frahm
2016) to initialize the position of 3D Gaussians. Each 3D
Gaussian is defined as a tuple comprising covariance ma-
trix Σ ∈ R3×3, center µ ∈ R3, view-dependent color c ∈

Position Offset μ
Rotation R
Scaling S

Opacity 𝛼
Color c

Geometric Graph Unet

Appearance Graph Unet

3D-aware
Enhancer

Splatting
Graph-guided
Optimization

TEC+

+

+

TCP

Tracked Camera Pose
Tracked Expression CoefficientTEC

TCP

Depth Map

TEC

Modulation

Time series

Tracked Mesh
Coarse Image Rendered Image

Figure 2: Pipeline of GraphAvatar. Our method takes the tracked meshes from source videos as input and first utilizes a geo-
metric Graph Unet and an appearance Graph Unet to generate corresponding 3D Gaussian attributes. These Gaussians are then
established as anchors to predict view-dependent attributes as neural Gaussians. To minimize errors from the tracked mesh, we
introduce a graph-guided optimization module that utilizes time series and bottleneck features from Graph Unet to refine the
tracked camera pose and expression coefficients. All Gaussians are combined and splatted into 2D images and depths using a
differentiable rasterizer. Conditioned on the predicted depth map, a 3D-aware enhancer post-processes the rendered images to
produce the final high-quality images.

R3(k+1)2 , and opacity α ∈ R, denoted by G = (Σ, µ, c, α),
where k is set to 3 representing the degree of the spherical
harmonics. The Gaussians are defined in the world coordi-
nate, centered at the mean point as:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ), (1)

To ensure stable training and guarantee that Σ is positive
semi-definite, the covariance matrix is further decomposed
into rotation R ∈ R4 and scaling S ∈ R3:

Σ = RSSTRT , (2)
The Gaussians are rasterized using a differentiable raster-

izer, which projects them into image space. The pixel color
C is computed as:

C =
∑
i=1

ciα
′
i

i−1∏
j=1

(1− α′
j), (3)

where ci is the color of each Gaussian. The blending weight
α′ is calculated by evaluating the 2D projection of the 3D
Gaussian, which is then multiplied by the opacity α. This
process is efficiently executed by the differentiable raster-
izer, resulting in successful image rendering.
GNN-based Avatar Representation
Intuitively, we aim to learn a function F (G(x)) = C that
maps animatable 3D Gaussians into rasterized avatar im-
ages. However, rendering high-fidelity head avatars typi-
cally requires more than 10,000 Gaussian parameters. Dur-
ing the densification process, the number of Gaussians fluc-
tuates with training, leading to dynamic storage require-
ments when modeling different head avatars with various fa-
cial expressions. Therefore, our approach involves generat-
ing rather than directly optimizing the 3D Gaussians binding
onto tracked meshes. To effectively capture the non-linear
variations and diverse expressions in tracked meshes, em-
ploying a graph neural network is intuitive. This allows for

the aggregation of complex geometric features inherent in
facial topology.

Inspired by (Ranjan et al. 2018), we utilize a geomet-
ric Graph Unet Ugeo and an appearance Graph Unet Uapp

to capture non-linear topology for each tracked mesh M =
(V,A). A 3D facial mesh M is a set of vertices |V | =
n, V ∈ Rn×3 and space adjacency matrix A ∈ 0, 1n×n,
where Aij = 1 denotes an edge connecting vertices i and
j. Since the adopted tracking method is FLAME-based, the
number n is 5023, corresponding to the vertex count of the
FLAME template. The non-normalized graph Laplacian is
defined as L = D − A, in which diagonal matrix D repre-
sents the degree of each vertex. Since the Laplacian is diag-
onalized by the Fourier basis U ∈ Rn×n as L = UΛUT , the
convolution operator ∗ can be defined in Fourier space as a
Hadamard product: x ∗ y = U((UTx)⊙ (UT y)). To reduce
the computation, we select the Chebyshev graph convolu-
tion gθi,j as the convolution layer in the Unet, which can be
defined as:

yj =

Fin∑
i=1

gθi,j (L)xi, (4)

where yj indicates the output features of the Chebyshev
graph convolution with trainable params θi,j and the input
x ∈ Rn×Fin has Fin features for each vertex. We further
calculate the normals N ∈ Rn×3 and concatenate them with
the vertices to serve as input features. Thus, Fin = 6 de-
notes the features of vertices, which include their position
and normal values. Except for the last layer, which has a
different output dimension, Ugeo (geometric Unet) and Uapp

(appearance Unet) consist of the same convolution layers. To
avoid excessive smoothing caused by graph convolution, we
utilize two graph convolution layers as the encoder, incorpo-
rating a mesh sampling operation as mentioned in (Ranjan
et al. 2018), to extract the bottleneck features z ∈ R8. Then

we concat z with expression coefficients e and decode them
using the same two graph convolution layers and upsample
the graph back to the original number of vertices. Different
activation functions are then applied to the vertex features,
which are set as the attributes of the 3D Gaussians. The en-
tire generation process is formulated as:

δµ, R, S = Act(Ugeo(X,A)), (5)
c, α = Act(Uapp(X,A)) (6)

where X ∈ Rn×3 represents the position and normals
for all vertices, and A denotes the adjacency matrix for the
tracked mesh M . The function Act refers to the activation
function used in 3DGS, applied to the output vertex fea-
tures and obtain Gaussians. The generated 3D Gaussians,
oriented from the mesh vertices, possess attributes including
{µ′, R, S, c, α}. We introduce a learnable offset to the orig-
inal vertex position to serve as the center of the generated
Gaussians: µ′ = µ+ δµ.

Since the FLAME-based face model lacks vertices to de-
scribe hair and accessories, merely generating Gaussian pa-
rameters from the tracked mesh is insufficient to cover the
entire space of a dynamic head. Inspired by Scaffold-GS (Lu
et al. 2023), we treat the Gaussians generated by the Graph
Unet as anchor points Ganc and assign several neural Gaus-
sians {G0, ..., Gk−1} binding to each anchor to represent the
complex topology not included in the tracked mesh. For each
anchor, we spawn k view-dependent neural Gaussians and
predict their attributes as follows:

{µ0, ..., µk−1} = µ+ {δµ0
, . . . , δµk−1

} · S, (7)

where {δµ0 , . . . , δµk−1
} ∈ R3 are the learnable offsets. For

the other attributes of neural Gaussians, we decode them
with individual MLPs. Take opacity α as an example, the
process is formulated as:

{α0, ..., αk−1} = Fα(fanc, d⃗c, e), (8)

where {α0, ..., αk−1} ∈ R1 denotes the opacity for neural
Gaussians. Fα denotes the MLPs used to generate the cor-
responding attribute. For the input, fanc is the learnable an-
chor features, d⃗c is the direction between the camera and the
anchor Gaussian and e is expression coefficients from face
tracking. Other attributes can be obtained similarly.

Finally, we gather all the attributes from anchor Gaussians
and neural Gaussians as G = {Ganc, G0, ..., Gk−1}, which
are rasterized into coarse 2D images Ic and depth maps D.
Graph-guided Optimization
To mitigate the inaccuracies stemming from tracked
FLAME parameters, including camera poses and expression
coefficients, we have developed a graph-guided optimization
module (GGO) to refine these parameters throughout the
training process. Inspired by (Ming et al. 2024) that intro-
duces a temporal regressor to rectify coefficients and ensure
smoothness, we input the normalized time t and process it
through MLPs to extract temporal features ft. Subsequently,
we concatenate the bottleneck features from both Graph Un-
ets, denoted as fg . Upon generating these features, we exe-
cute a cross-attention mechanism (Attn) between ft and fg ,
which enables the prediction of offsets for the tracked pa-
rameters. It can be formulated as:

δ = Attn(q = fg, k = ft, v = ft), ft = MLP(t) (9)

Then we divide the prediction into two components: δe and
δpose, which represent the offsets for the tracked expression
coefficients and the camera pose offsets within the Lie group
SO(3), denoting the space of 3D rotations. Subsequently,
we transform δpose into a transformation matrix and apply
these offsets to the original tracked parameters. Through
such a process, GraphAvatar can optimize both facial ex-
pressions and camera poses guided by the graph features in
an end-to-end manner.

3D-aware Enhancer
To achieve higher rendering quality, we have designed a 3D-
aware enhancer specifically for detail restoration. Instead of
merely concatenating the rendered maps as the input to a
Unet post-processor, we treat the depth signal D separately.
This depth signal is integrated into every block of the Unet
through a learned transformation that modulates the activa-
tion within each block. This method allows for a more nu-
anced adjustment based on depth information, enhancing the
details of rendered images.

Formally, let F k represent the activation of an intermedi-
ate block within the network, where k indicates the block
level and Ck is the channel dimension at that level. The
depth map D undergoes a transformation, such as a 1 × 1
convolution, to predict scale γk

i,j and bias βi,j values, which
match the channel dimension Ck. These scale and bias val-
ues are then used to modulate the activations F k according
to the following formula:

F̃ k
i,j = γk

i,j(D)⊙ F k
i,j + βi,j(D). (10)

where ⊙ denotes element-wise product, i and j indicate
the spatial position. Integrating the local information from
nearby pixels has proven effective for recovering high-
frequency details, particularly in dynamic avatar animations.
Learning local correlations facilitates the extraction of pat-
terns across spatial regions, linking them closely to the un-
derlying 3D geometric structure. Additionally, modulating
the process with depth maps introduces geometric guidance
that further regularizes the learning process. The proposed
3D-aware enhancer ensures that the enhancements are not
only visually compelling but also geometrically coherent,
leading to high-fidelity facial animation.

Training
Given the complexities involved in optimizing graph neu-
ral networks, we initiate with a warm-up stage for param-
eter initialization. We treat the target actor as a static scene
and utilize vanilla 3D Gaussian Splatting (3DGS) to produce
pseudo Gaussians. Subsequently, we implement an MSE
(Mean Squared Error) loss between the Gaussians Ganc gen-
erated by the Graph Unet and the pseudo Gaussians. This
warm-up phase is rapid, consisting of 10,000 iterations.

After the initialization of the graph neural networks, we
proceed to train the full pipeline of GraphAvatar. We su-
pervise the rendered image If using a combination of L1
loss, SSIM (Structural Similarity Index) loss, and LPIPS
(Learned Perceptual Image Patch Similarity) loss. These
loss functions help in refining the final image quality by

Table 1: Results on the dataset provided by INSTA (Zielonka, Bolkart, and Thies 2022a) and NeRFBlendShape (NBS) (Gao
et al. 2022). We report L2 distance, PSNR, SSIM, LPIPS, inference time (rendering time for one frame) and model size. We
highlight the best performance in bold. Ours GraphAvatar achieves the highest quality in avatar animation rendering with
competitive inference time and minimal model storage size.

Method dataset L2 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) ↓ Size (MB) ↓
NHA (Grassal et al. 2022)

INSTA

0.0024 26.99 0.942 0.043 0.63 90.8
IMAvatar (Zheng et al. 2022) 0.0021 27.92 0.943 0.061 12.34 22.7
INSTA (Zielonka, Bolkart, and Thies 2022a) 0.0017 28.61 0.944 0.047 0.052 523.7
FlashAvatar (Xiang et al. 2024) 0.0017 29.20 0.949 0.040 0.007 13.3
Gaussian Head Avatar (Xu et al. 2024) 0.0016 29.71 0.958 0.043 0.011 43.1
GaussianAvatars (Qian et al. 2024) 0.0014 29.06 0.953 0.046 0.006 71.3
GraphAvatar (Ours) 0.0011 30.52 0.966 0.036 0.029 10.8
NeRFBlendShape (Gao et al. 2022)

NBS

0.0035 24.81 0.935 0.086 0.10 538.7
FlashAvatar (Xiang et al. 2024) 0.0028 25.68 0.939 0.073 0.007 13.3
Gaussian Head Avatar (Xu et al. 2024) 0.0022 26.38 0.944 0.064 0.011 43.8
GaussianAvatars (Qian et al. 2024) 0.0024 25.56 0.937 0.073 0.006 42.7
GraphAvatar (Ours) 0.0018 27.32 0.953 0.061 0.029 10.8

focusing on both pixel-level accuracy and perceptual sim-
ilarity, thereby ensuring that the rendered images are both
visually accurate and aesthetically pleasing:

Lf = (1− λ)L1 + λLD−SSIM + λLPIPSLLPIPS (11)

with λ = 0.2, λLPIPS = 0.1. To maintain the render qual-
ity of coarse images Ic, we also supervise it with L1 loss
and SSIM loss, which is denoted as Lc. Additionally, to re-
strict the growing space for neural Gaussians, GraphAvatar
further renders weight maps to denote the probability be-
tween foreground and background. We supervise the weight
maps against the foreground head segmentation using cross-
entropy loss, denoted as Lw. Our final loss function is:

L = λfLf + λcLc + λwLw (12)

where λf = 1.0, λc = 0.1 and λw = 0.1. GraphAvatar is
trained with the final loss until convergence.

Experiments
Experimental Settings
Datasets and Baselines. We evaluate our model using
two challenging datasets: NeRFBlendShape (abbreviated as
NBS data) and INSTA. The NBS dataset (Gao et al. 2022)
comprises monocular videos from eight subjects, with the
last 500 frames of each subject’s video designated as the
test set. Similarly, the INSTA dataset (Zielonka, Bolkart, and
Thies 2022a) includes data from ten subjects, with the final
350 frames of each sequence reserved for testing.

For the INSTA dataset, we select NeRF-based methods in-
cluding NHA (Grassal et al. 2022), IMAvatar (Zheng et al.
2022), and INSTA (Zielonka, Bolkart, and Thies 2022a),
as well as 3DGS-based methods such as FlashAvatar (Xi-
ang et al. 2024), Gaussian Head Avatar (Xu et al. 2024),
and GaussianAvatars (Qian et al. 2024). Since FlashAvatar
and GaussianAvatars outperform the previous point-based
method PointAvatar (Zheng et al. 2023), we opted to com-
pare with more advanced methods instead. To ensure a fair
comparison, we adhere to the data preprocessing protocols
provided by each baseline. However, since several tracking
data required by the 3DGS-based methods are absent in the

originally provided dataset, we retrack the subjects using the
metrical-tracker (Zielonka, Bolkart, and Thies 2022b).

For the NBS dataset, we select NeRF-based methods in-
cluding NeRFBlendShape (Gao et al. 2022) and 3DGS-
based methods such as FlashAvatar (Xiang et al. 2024),
Gaussian Head Avatar (Xu et al. 2024), and GaussianA-
vatars (Qian et al. 2024). To ensure a fair comparison, we
mask the background in white and maintain the head and
neck of the subjects as the foreground. Since NeRFBlend-
Shape is initially trained only for the head, we retrain it
to render avatars that include both the head and neck un-
til full convergence. Additionally, the NBS dataset, based on
NeRFBlendShape, does not provide FLAME-based tracking
parameters. Thus, we retrack all subjects using the metrical-
tracker (Zielonka, Bolkart, and Thies 2022b) and store track-
ing results for the training of 3DGS-based methods.
Metrics. To assess the quality of the synthesized images,
we report common metrics such as Mean Squared Error
(L2), Peak Signal-to-Noise Ratio (PSNR), Structural Sim-
ilarity (SSIM) and Learned Perceptual Image Patch Similar-
ity (LPIPS) (Zhang et al. 2018). Additionally, we report the
inference time for rendering in seconds and the model size
for storage occupation in megabytes.

Head Avatar Animation
Quantitative comparison. In this experiment, we animate
the learned actors using novel poses and expression param-
eters derived from their test sets.

Tab. 1 displays the metric comparisons against baseline
methods, with separate sections for the INSTA and NBS
datasets. It is evident from the table that NeRF-based meth-
ods, such as NeRFBlendShape and INSTA, yield signif-
icantly larger model sizes compared to the 3DGS-based
method, underscoring the potential of the 3DGS method for
model compression. More notably, GraphAvatar surpasses
recent 3DGS-based baselines in terms of both rendering
quality and model size. This validates our approach of re-
placing 3D Gaussians with GNNs to store parameters, which
not only compacts the model size but also preserves perfor-
mance. FlashAvatar assigns Gaussians based on the 2D fa-

INSTA FlashAvatar
Gaussian

Head Avatar
Gaussian
Avatars Ours Ground

Truth
Figure 3: Qualitative comparison on INSTA dataset.

NeRF
BlendShape FlashAvatar Gaussian

Head Avatar
Gaussian
Avatars Ours Ground

Truth

Figure 4: Qualitative comparison on NBS dataset.

cial UV map, but the limited resolution leads to ambiguous
and unclear details in the UV map. Compared to Gaussian
Head Avatar and GraphAvatar, which rely on face tracking,
GraphAvatar uses a graph-guided optimization strategy that
effectively reduces the accumulation of prior knowledge er-
rors and decreases dependency on tracked meshes. The 3D-
aware enhancer in GraphAvatar significantly enhances im-
age quality, contributing to its top PSNR scores.

Qualitative comparison. Fig. 3 and Fig. 4 provide quali-
tative comparisons with the latest baseline methods for each
dataset. Considering the FLAME model’s inability to model
teeth accurately, we primarily compared the image rendering
precision of various methods on the dental region as shown
in the first three rows of Fig. 3. Other methods, overly reliant
on tracked meshes or UV maps, failed to capture the dental
details accurately. In contrast, our method utilizes a graph-
guided optimization strategy that significantly reduces the
accumulation of prior knowledge errors during training, thus
minimizing dependency on tracked meshes. This allows for
better rendering of intricate tooth structures. In the fourth
row, we selected an extreme angle as a test case, where
other methods showed artifacts to varying degrees, failing to
render facial features like eyes accurately. Notably, FlashA-
vatar, to reduce the number of 3D Gaussians, relies on UV
maps, losing vital 3D preparatory knowledge, resulting in
the largest angle errors in generating head avatars. Con-
versely, our method accurately produces head avatars even
at extreme angles, closely matching the ground truth.

In Fig. 4, our method achieves optimal image rendering
precision in details like eyes, mouth, teeth, and hair strands.
GaussianAvatars struggles to accurately control the closure
of eyes and mouths, possibly due to its poor sensitivity to
expression coefficients and greater dependence on tracked
meshes. In the fourth row, our method’s image rendering
precision for the eye region is close to that of Gaussian Head
Avatar, but the latter occasionally shows flaws, as indicated
by the blue box. In summary, it can be seen that GraphAvatar
preserves the best details. Please refer to the supplementary
material for more visualization results.
Component-wise Ablations
In this section, we conduct a component-wise ablation study
to elucidate the influence of each component. Initially, we
train GraphAvatar from scratch without the warm-up stage,
denoted as “w/o Warm-up Stage”, to evaluate the influence
of pseudo Gaussians for graph optimization. Next, we omit
the neural Gaussian, referring to this as “w/o Neural Gaus-
sian”, which retains only the anchor points generated by the
Graph Unet. This allows us to evaluate the impact of the
neural Gaussian on the FLAME-based face model’s missing
elements, such as hair and accessories. Finally, we exclude
the Graph-guided Optimization module and the 3D-aware
Enhancer in the method section to assess the contributions
of these proposed components.

As shown in Tab. 2, our GraphAvatar with the full
pipeline achieves the best performance. Without the warm-
up stage, GraphAvatar exhibits unstable training and diffi-
culty converging, which is attributed to the characteristics
of the graph neural network. Without the neural Gaussian,
GraphAvatar is constrained by the FLAME template, lack-

Table 2: Component-wise ablation study of GraphAvatar on
the INSTA dataset.

Method L2 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) ↓ Size (MB) ↓
w/o Warm-up Stage 0.1283 8.97 0.818 0.334 0.029 10.8
w/o Neural Gaussian 0.0014 29.61 0.945 0.051 0.027 10.5
w/o Graph-guided Optimization 0.0012 30.41 0.963 0.041 0.028 10.6
w/o 3D-aware Enhancer 0.0011 30.50 0.959 0.042 0.024 10.1
Full Pipeline 0.0011 30.52 0.966 0.036 0.029 10.8

w/o Neural Gaussian w/o Graph-guided
Optimization

w/o 3D-aware
Enhancer Ours Ground Truth

Figure 5: Qualitative ablation study on the INSTA dataset.

ing the ability to model hair and accessories, making it diffi-
cult for anchor Gaussians to cover the entire 3D head. With-
out the Graph-guided Optimization module, accumulation
errors from FLAME coefficients and tracking camera poses
lead to a decline in rendering quality. The absence of the
3D-aware Enhancer results in over-smoothness introduced
by the GNN, which negatively impacts human-perceptual
metrics like SSIM and LPIPS. The two graph Unets con-
sume the majority of the time and model size, while the other
three components occupy only a small portion but play cru-
cial roles in different aspects. GraphAvatar achieves an opti-
mal trade-off between rendering quality and model size.

To further illustrate the influence of each technique, we
also implement a visual ablation in Fig. 5. Without the ex-
tension of neural Gaussian and graph-guided optimization,
GraphAvatar is constrained by the tracked mesh, leading to
blurred hair that is not included in the tracked mesh trans-
formed from the FLAME template. Additionally, due to the
over-smooth characteristics of GNN, the network tends to
generate coarse images with fewer details. Thus, we intro-
duce a 3D-aware enhancer to capture high-frequency details
and refine the rendered images. It can be observed that with
all these techniques, the rendered images retain more de-
tails in the eyes and hair, leading to improvements in SSIM
and LPIPS scores that better align with human visual per-
ception metrics. GraphAvatar strikes a better balance be-
tween achieving optimal visual quality and maintaining a
lightweight model. Please refer to the supplementary mate-
rials for more ablation studies in different settings.

Conclusion
In this work, we propose GraphAvatar, a compact method
that takes tracked meshes as input and uses graph neural
networks to generate the parameters of 3D Gaussians, ulti-
mately rendering dynamic avatar animations. GraphAvatar
employs Graph Unets, significantly reducing the storage
consumption compared to directly storing 3D Gaussians.
Our method achieves state-of-the-art performance in both
image quality and storage consumption, opening up new
possibilities for advanced digital human avatar applications.

References
Chen, P.; Wei, X.; Lu, M.; Zhu, Y.; Yao, N.; Xiao, X.; and
Chen, H. 2023. DiffusionTalker: Personalization and Accel-
eration for Speech-Driven 3D Face Diffuser. arXiv preprint
arXiv:2311.16565.

Cudeiro, D.; Bolkart, T.; Laidlaw, C.; Ranjan, A.; and Black,
M. 2019. Capture, Learning, and Synthesis of 3D Speaking
Styles. In Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 10101–10111.

Dhamo, H.; Nie, Y.; Moreau, A.; Song, J.; Shaw, R.; Zhou,
Y.; and Pérez-Pellitero, E. 2023. Headgas: Real-time an-
imatable head avatars via 3d gaussian splatting. arXiv
preprint arXiv:2312.02902.

Fan, Y.; Lin, Z.; Saito, J.; Wang, W.; and Komura, T. 2022.
Faceformer: Speech-driven 3d facial animation with trans-
formers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 18770–18780.

Fang, J.; Wang, J.; Zhang, X.; Xie, L.; and Tian, Q. 2023.
Gaussianeditor: Editing 3d gaussians delicately with text in-
structions. arXiv preprint arXiv:2311.16037.

Gafni, G.; Thies, J.; Zollhofer, M.; and Nießner, M. 2021.
Dynamic neural radiance fields for monocular 4d facial
avatar reconstruction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 8649–
8658.

Gao, X.; Zhong, C.; Xiang, J.; Hong, Y.; Guo, Y.; and Zhang,
J. 2022. Reconstructing Personalized Semantic Facial NeRF
Models From Monocular Video. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia), 41(6).

Grassal, P.-W.; Prinzler, M.; Leistner, T.; Rother, C.;
Nießner, M.; and Thies, J. 2022. Neural head avatars from
monocular rgb videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
18653–18664.

Hong, Y.; Peng, B.; Xiao, H.; Liu, L.; and Zhang, J. 2022.
Headnerf: A real-time nerf-based parametric head model. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 20374–20384.

Kerbl, B.; Kopanas, G.; Leimkühler, T.; and Drettakis, G.
2023. 3d gaussian splatting for real-time radiance field ren-
dering. ACM Transactions on Graphics (ToG), 42(4): 1–14.

Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.

Li, T.; Bolkart, T.; Black, M. J.; Li, H.; and Romero, J. 2017.
Learning a model of facial shape and expression from 4D
scans. ACM Trans. Graph., 36(6): 194–1.

Lu, T.; Yu, M.; Xu, L.; Xiangli, Y.; Wang, L.; Lin, D.; and
Dai, B. 2023. Scaffold-gs: Structured 3d gaussians for view-
adaptive rendering. arXiv preprint arXiv:2312.00109.

Mildenhall, B.; Srinivasan, P. P.; Tancik, M.; Barron, J. T.;
Ramamoorthi, R.; and Ng, R. 2021. Nerf: Representing
scenes as neural radiance fields for view synthesis. Com-
munications of the ACM, 65(1): 99–106.

Ming, X.; Li, J.; Ling, J.; Zhang, L.; and Xu, F. 2024.
High-Quality Mesh Blendshape Generation from Face
Videos via Neural Inverse Rendering. arXiv preprint
arXiv:2401.08398.
Paysan, P.; Knothe, R.; Amberg, B.; Romdhani, S.; and Vet-
ter, T. 2009. A 3D face model for pose and illumination in-
variant face recognition. In 2009 sixth IEEE international
conference on advanced video and signal based surveil-
lance, 296–301. Ieee.
Peng, Z.; Luo, Y.; Shi, Y.; Xu, H.; Zhu, X.; Liu, H.; He,
J.; and Fan, Z. 2023a. Selftalk: A self-supervised commu-
tative training diagram to comprehend 3d talking faces. In
Proceedings of the 31st ACM International Conference on
Multimedia, 5292–5301.
Peng, Z.; Wu, H.; Song, Z.; Xu, H.; Zhu, X.; He, J.; Liu,
H.; and Fan, Z. 2023b. Emotalk: Speech-driven emotional
disentanglement for 3d face animation. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, 20687–20697.
Qian, S.; Kirschstein, T.; Schoneveld, L.; Davoli, D.;
Giebenhain, S.; and Nießner, M. 2024. Gaussianavatars:
Photorealistic head avatars with rigged 3d gaussians. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 20299–20309.
Ranjan, A.; Bolkart, T.; Sanyal, S.; and Black, M. J. 2018.
Generating 3D faces using convolutional mesh autoen-
coders. In Proceedings of the European conference on com-
puter vision (ECCV), 704–720.
Schonberger, J. L.; and Frahm, J.-M. 2016. Structure-from-
motion revisited. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 4104–4113.
Wang, P.; Liu, L.; Liu, Y.; Theobalt, C.; Komura, T.; and
Wang, W. 2021. Neus: Learning neural implicit surfaces
by volume rendering for multi-view reconstruction. arXiv
preprint arXiv:2106.10689.
Wei, X.; Zhang, R.; Wu, J.; Liu, J.; Lu, M.; Guo, Y.; and
Zhang, S. 2023. NOC: High-Quality Neural Object Cloning
with 3D Lifting of Segment Anything. arXiv preprint
arXiv:2309.12790.
Xiang, J.; Gao, X.; Guo, Y.; and Zhang, J. 2024. FlashA-
vatar: High-fidelity Head Avatar with Efficient Gaussian
Embedding. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).
Xu, Y.; Chen, B.; Li, Z.; Zhang, H.; Wang, L.; Zheng,
Z.; and Liu, Y. 2023. Gaussian head avatar: Ultra high-
fidelity head avatar via dynamic gaussians. arXiv preprint
arXiv:2312.03029.
Xu, Y.; Chen, B.; Li, Z.; Zhang, H.; Wang, L.; Zheng, Z.;
and Liu, Y. 2024. Gaussian Head Avatar: Ultra High-fidelity
Head Avatar via Dynamic Gaussians. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).
Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; and Wang,
O. 2018. The unreasonable effectiveness of deep features as
a perceptual metric. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 586–595.

Zheng, Y.; Abrevaya, V. F.; Bühler, M. C.; Chen, X.; Black,
M. J.; and Hilliges, O. 2022. Im avatar: Implicit morphable
head avatars from videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
13545–13555.
Zheng, Y.; Yifan, W.; Wetzstein, G.; Black, M. J.; and
Hilliges, O. 2023. Pointavatar: Deformable point-based
head avatars from videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
21057–21067.
Zielonka, W.; Bolkart, T.; and Thies, J. 2022a. Instant Volu-
metric Head Avatars. 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 4574–4584.
Zielonka, W.; Bolkart, T.; and Thies, J. 2022b. Towards met-
rical reconstruction of human faces. In European Confer-
ence on Computer Vision, 250–269. Springer.
Zielonka, W.; Bolkart, T.; and Thies, J. 2023. Instant volu-
metric head avatars. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 4574–
4584.

AAAI Paper Checklist
This paper:
• Includes a conceptual outline and/or pseudocode descrip-

tion of AI methods introduced. [Yes]
• Clearly delineates statements that are opinions, hypoth-

esis, and speculation from objective facts and results.
[Yes]

• Provides well marked pedagogical references for less-
familiare readers to gain background necessary to repli-
cate the paper. [Yes]

Does this paper make theoretical contributions? [Yes]

• All assumptions and restrictions are stated clearly and
formally. [Yes]

• All novel claims are stated formally (e.g., in theorem
statements). [Yes]

• Proofs of all novel claims are included. [Yes]
• Proof sketches or intuitions are given for complex and/or

novel results. [Yes]
• Appropriate citations to theoretical tools used are

given.[Yes]
• All theoretical claims are demonstrated empirically to

hold. [Yes]
• All experimental code used to eliminate or disprove

claims is included. [No] . But the core code has been in-
cluded in the appendix.

Does this paper rely on one or more datasets? [Yes]

• A motivation is given for why the experiments are con-
ducted on the selected datasets. [Yes]

• All novel datasets introduced in this paper are included
in a data appendix. [NA]

• All novel datasets introduced in this paper will be made
publicly available upon publication of the paper with a
license that allows free usage for research purposes.[NA]

• All datasets drawn from the existing literature (poten-
tially including authors’ own previously published work)
are accompanied by appropriate citations. [Yes]

• All datasets drawn from the existing literature (poten-
tially including authors’ own previously published work)
are publicly available. [Yes]

• All datasets that are not publicly available are described
in detail, with explanation why publicly available alter-
natives are not scientifically satisficing. [NA]

Does this paper include computational experiments?
[Yes]

• Any code required for pre-processing data is included
in the appendix. [No] . We keep the same data pre-
processing with baselines.

• All source code required for conducting and analyzing
the experiments is included in a code appendix. [No] .
But the core code has been included in the appendix.

• All source code required for conducting and analyzing
the experiments will be made publicly available upon
publication of the paper with a license that allows free
usage for research purposes. [Yes]

• All source code implementing new methods have com-
ments detailing the implementation, with references to
the paper where each step comes from [Yes]

• If an algorithm depends on randomness, then the method
used for setting seeds is described in a way sufficient to
allow replication of results. [Yes]

• This paper specifies the computing infrastructure used
for running experiments (hardware and software), includ-
ing GPU/CPU models; amount of memory; operating
system; names and versions of relevant software libraries
and frameworks.[Yes]

• This paper formally describes evaluation metrics used
and explains the motivation for choosing these metrics.
[Yes]

• This paper states the number of algorithm runs used to
compute each reported result. [Yes]

• Analysis of experiments goes beyond single-dimensional
summaries of performance (e.g., average; median) to in-
clude measures of variation, confidence, or other distri-
butional information.[Yes]

• The significance of any improvement or decrease in
performance is judged using appropriate statistical tests
(e.g., Wilcoxon signed-rank). [Yes]

• This paper lists all final (hyper-)parameters used for each
model/algorithm in the paper’s experiments. [Yes]

• This paper states the number and range of values tried
per (hyper-) parameter during development of the paper,
along with the criterion used for selecting the final pa-
rameter setting. [Yes]

